Kinematics of Fluid FLow
Velocity The term kinematics refers to the quantitative description of fluid motion or deformation. The rate of deformation depends on the distribution of velocity within the fluid. Fluid velocity v is a vector quantity, with three cartesian components vx, vy, and vz.
The velocity vector is a function of spatial position and time. A steady flow is one in which the velocity is independent of time, while in unsteady flow v varies with time.
Compressible and Incompressible Flow An incompressible flow is one in which the density of the fluid is constant or nearly constant.
Liquid flows are normally treated as incompressible, except in the context of hydraulic transients (see following). Compressible fluids, such as gases, may undergo incompressible flow if pressure and/or temperature changes are small enough to render density changes insignificant. Frequently, compressible flows are regarded as flows in
which the density varies by more than 5 to 10 percent.
Streamlines, Pathlines, and Streaklines These are curves in a flow field which provide insight into the flow pattern. Streamlines are tangent at every point to the local instantaneous velocity vector. A pathline is the path followed by a material element of fluid; it coincides with a streamline if the flow is steady. In unsteady flow the pathlines
generally do not coincide with streamlines. Streaklines are curves on which are found all the material particles which passed through a particular point in space at some earlier time. For example, a streakline is revealed by releasing smoke or dye at a point in a flow field. For steady flows, streamlines, pathlines, and streaklines are indistinguishable. In two-dimensional incompressible flows, streamlines are contours of the stream function.
One-dimensional Flow Many flows of great practical importance, such as those in pipes and channels, are treated as onedimensional flows. There is a single direction called the flow direction; velocity components perpendicular to this direction are either zero or
considered unimportant. Variations of quantities such as velocity, pressure, density, and temperature are considered only in the flow direction. The fundamental conservation equations of fluid mechanics are greatly simplified for one-dimensional flows. A broader category of one-dimensional flow is one where there is only one nonzero velocity component, which depends on only one coordinate direction, and this coordinate direction may or may not be the same as the flow direction.
Rate of Deformation Tensor For general three-dimensional flows, where all three velocity components may be important and may vary in all three coordinate directions, the concept of deformation previously introduced must be generalized. The rate of deformation tensor Dij has nine components. In Cartesian coordinates,
Dij = dvi/dxj + dvj/dxi
where the subscripts i and j refer to the three coordinate directions.